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ABSTRACT

Context. Radiation plays a significant role in solar and astrophysical environments as it may constitute a sizeable fraction of the
energy density, momentum flux, and the total pressure. Modelling the dynamic interaction between radiation and magnetized plasmas
in such environments is an intricate and computationally costly task.
Aims. The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework
MPI-AMRVAC, in solving equations of radiation-magnetohydrodynamics (RMHD), and to present benchmark test cases relevant for
radiation-dominated magnetized plasmas.
Methods. The existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules
are combined to solve the equations of radiation-magnetohydrodynamics (RMHD) on block-adaptive finite volume Cartesian meshes
in any dimensionality.
Results. We introduce and validate several benchmark test cases such as steady radiative MHD shocks, radiation-damped linear
MHD waves, radiation-modified Riemann problems and a multi-dimensional radiative magnetoconvection case. We recall the basic
governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick
radiation fields where the diffusion limit is reached. The RMHD system allows for 8 linear wave types, where the classical 7-wave
MHD picture (entropy and three wave pairs for slow, Alfvén and fast) is augmented with a radiative diffusion mode.
Conclusions. The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation
making it well-suited for larger scientific applications to study magnetized matter-radiation interactions in solar and stellar interiors
and atmospheres.

Key words. magnetohydrodynamics – radiation – FLD – methods: numerical – shocks – waves: damping – Riemann problem –
magnetoconvection

1. Introduction

Radiation is a key driver in many solar and astrophysical pro-
cesses and could be a determining factor in the overall dynam-
ics of such flows. For example, radiation is necessary to prevent
‘overcooling’ and to accurately predict star formation frequency
in simulations of galaxy evolution (Emerick et al. 2018). The
process of granulation in the Sun’s convection zone is driven
by radiative cooling (Stein & Nordlund 1998, 2000; Jacoutot
et al. 2008). Radiation is also important in the accretion pro-
cesses around black holes (Igumenshchev et al. 2003; Jiang et al.
2019b) and stars (Tomida et al. 2010). The force exerted by ra-
diation onto stellar gas is the driving force behind the winds of
massive stars and determines the velocity profile and structure
of their stellar winds (Castor et al. 1975; Cassinelli 1979; Moens
et al. 2022a; Esseldeurs et al. 2023; Debnath et al. 2024; Vink
2024). The coupling between the plasma and the radiation field
can be a truly non-local process, and may strongly depend on
the radiation wavelength (or frequency) and the plasma density
and temperature. Although in general the full radiative trans-
fer equation dictating the change of intensity (at specific fre-

⋆ corresponding author

quency) needs to be solved along all possible rays, it is custom-
ary to use moments of the radiative transfer equation and refor-
mulate the matter-radiation interaction using coupled momen-
tum and energy equations for plasma and radiation fields (Wün-
sch 2024). These in essence reformulate the complex extinction
and emission processes (where energy is taken away or added to
the radiation beam) into angle and frequency averaged opacities
and emission coefficients. Known limits are the diffusion limit
(strong coupling between radiation and matter, such as in deep
stellar interior layers), and the free-stream limit, adequate when
the radiation and matter is uncoupled, i.e. the optically thin ra-
diative regime.

For many applications, it suffices to solve radiation-
hydrodynamic (RHD) equations where the included (angular and
frequency integrated) moments of the transfer equation are the
radiation energy density and the radiation flux vector. In the
case of significant magnetic fields, the RHD equations are com-
plemented with a description of the magnetic field to give the
radiation-magnetohydrodynamics equations (RMHD). RMHD
is necessary to study phenomena in solar contexts, where sub-
photosphere to coronal layers indeed represent a clear transition
between optically thick and thin regimes, in the presence of dy-

Article number, page 1 of 30

ar
X

iv
:2

50
3.

02
76

4v
1 

 [
as

tr
o-

ph
.S

R
] 

 4
 M

ar
 2

02
5

songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang




A&A proofs: manuscript no. fld-mhd

namically important magnetic fields (which dominate in the so-
lar corona, or in sunspots). The development of efficient and ac-
curate numerical techniques to solve these systems is a daunting
task. Over the years, researchers have developed several RHD
and RMHD codes with a wide range of techniques. For exam-
ple, Commerçon et al. (2011) used an RHD solver to study the
fragmentation and collapse of prestellar dense cores. Van der
Holst et al. (2011) developed the block-adaptive framework
CRASH to perform multi-dimensional RHD simulations of two-
temperature plasmas. Johnson & Klein (2010) performed RHD
simulations of radiative acoustic waves and radiative diffusion
waves. Hayes et al. (2006) studied acoustic waves and shocks
in radiative media using ZEUS-MP, a parallel, adaptive, multi-
physics computational framework. Yang & Yuan (2012) stud-
ied hydrodynamic radiating supercritical shocks using a shock-
capturing HLLD Riemann solver. Kim et al. (2017) modelled the
UV feedback from massive stars using the 3D RHD module of
the Athena code. Moens et al. (2022b) implemented radiation-
hydrodynamics in the parallel, block-adaptive simulation frame-
work MPI-AMRVAC, which is also at the base of this work, and
used it to study the outflows of Wolf-Rayet-type stars (Moens
et al. 2022a). This code was later also used to study the cou-
pled turbulent envelopes and outflows of O-type stars by Deb-
nath et al. (2024). González et al. (2015) performed 3D RHD
simulations of protostellar collapse using the parallel, adaptive
RAMSES code.

Jiang et al. (2012) developed an RMHD algorithm to study
phenomena such as the photon bubble instability and radiative
ablation of dense clouds. The Athena++ code was used to per-
form global 3D RMHD simulations of accretion disks surround-
ing supermassive black holes (Jiang et al. 2019b,a; Jiang & Blaes
2020). Flock et al. (2013) used the PLUTO code to perform global
3D RMHD simulations of heating of protoplanetary discs by
the magneto-rotational instability. Jiang et al. (2014) also ex-
plored the role of the magnetorotational instability in the for-
mation of hot accretion disk coronae using 3D RMHD simu-
lations. Farcy et al. (2022) performed RMHD simulations us-
ing the RAMSES-RT code to study the effect of cosmic rays on
star formation efficiency in galaxies. 3D RMHD simulations of
protostellar collapse have also been performed to study forma-
tion of circumstellar disks and protostellar cores (Tomida et al.
2012, 2015). Ohsuga et al. (2009) performed 2D RMHD sim-
ulations of black hole accretion disks. MURaM, a code designed
specifically to simulate stellar atmospheres, was recently used
by Panja et al. (2020) to perform 3D RMHD simulations of
starspots. MURaM was later used by Przybylski et al. (2022) to
perform RMHD simulation of non-equilibrium hydrogen ioniza-
tion effects on the chromosphere. The 3D RMHD code known
as Bifrost has been used to study the transition from opti-
cally thin to thick media in the chromosphere (Carlsson et al.
2016) and more recently ambipolar diffusion processes in solar
atmospheres (Nóbrega-Siverio et al. 2020). Iijima & Yokoyama
(2017) studied the formation of solar chromospheric jets through
3D RMHD simulations with the RAMENS code. Khomenko et al.
(2018) used the MANCHA3D code (Modestov et al. 2024) to per-
form 3D RMHD simulations of magnetoconvection incorporat-
ing non-ideal effects such as ambipolar diffusion.

To avoid the complexity of the full integro-differential radia-
tive transfer equation, moment formulations use closure relations
required for coupling the radiation equations with the equations
of HD and MHD. One such approach is the Variable Edding-
ton Tensor (VET) formalism (Stone & Norman 1992; Hayes
& Norman 2003; Jiang et al. 2012) where the zeroth and sec-
ond angular moments are related by a variable Eddington ten-

sor computed from a time-independent transfer equation at ev-
ery time step. This VET approach requires the solution of the
time-dependent radiation energy and radiation momentum equa-
tions. A similar approach is the M1-closure scheme (Gonzalez
et al. 2007; Skinner & Ostriker 2013; Bloch et al. 2021), which
also requires the solution of the time-dependent radiation energy
and radiation momentum equations, but the radiation stress ten-
sor is closed by an assumed analytic function of the radiation
energy density and radiation momentum. An even simpler ap-
proach is the flux-limited diffusion (FLD) approximation, which
was first employed by Alme & Wilson (1974) and has been
implemented by several researchers since then (Minerbo 1978;
Levermore & Pomraning 1981; Turner & Stone 2001; Hayes
et al. 2006; Van der Holst et al. 2011; Yang & Yuan 2012; Moens
et al. 2022b). In this approach, only the radiation energy equa-
tion needs to be solved, whereas the radiation momentum is as-
sumed proportional to the gradient of the radiation energy den-
sity, using a so-called empirical flux-limiter as a closure rela-
tion. In this approach, a time-independent radiation momentum
equation is solved to obtain a closure for the Eddington tensor
which becomes a function of the radiation energy density and
its gradient. The FLD approach, although the simplest and com-
putationally cheapest approach among all the above approaches,
still fully recovers the optically thin and thick limits and retains
a lot of the important physics. However, FLD has several no-
table and potentially severe constraints that users must be mind-
ful of. These include the inability to handle situations with dis-
tinct beams and shadows (Hayes & Norman 2003; Davis et al.
2012), erroneous predictions in transition regions between opti-
cally thick and optically thin regimes (Boley et al. 2007) and the
inability to model radiation viscosity effects (Mihalas & Miha-
las 1984; Castor 2004; Jiang et al. 2012), among others. For an
in-depth review of the various prescriptions used for modelling
the radiation field, the reader is referred to the work by Wünsch
(2024). In this work, we introduce the FLD approximation for an
RMHD module as added to the open-source MPI-AMRVAC code.

The MPI-AMRVAC code uses Fortran 90 and MPI for solv-
ing hyperbolic and elliptic PDEs on parallel, block-adaptive
grids. MPI-AMRVAC originally focused on special relativistic HD
and MHD regimes (Keppens et al. 2012), but has been fine-
tuned to simulate solar and non-relativistic astrophysical mag-
netized plasmas (Porth et al. 2014; Xia et al. 2018; Keppens
et al. 2023). The magnetohydrodynamics module has been used
for studying several solar phenomena in the solar corona such
as flux rope formation (Xia et al. 2014b), prominence forma-
tion (Xia et al. 2012, 2014a; Xia & Keppens 2016; Jenkins &
Keppens 2022; Donné & Keppens 2024), prominence oscilla-
tions (Zhou et al. 2018), solar flares (Ruan et al. 2020, 2023,
2024; Druett et al. 2024) and coronal rain dynamics (Li et al.
2022, 2023; Jerčić et al. 2024). Over the years, MPI-AMRVAC
has been upgraded through the efforts of several researchers
to include more capabilities such as high order reconstruction,
gas-dust coupling, multi-fluid modelling, Super-Time-Stepping
(STS), Implicit-Explicit (IMEX) schemes among others (Kep-
pens et al. 2023). Its modular structure with options for vari-
ous numerical schemes and switches to include many different
physics terms makes it relatively easy to integrate new mod-
ules into the existing code. Recently, Moens et al. (2022b) im-
plemented a two-temperature FLD approach in MPI-AMRVAC to
handle coupling of the hydrodynamics module with radiation.
We extend this FLD approach to be used along with the equa-
tions of magnetohydrodynamics to model the interaction of ra-
diation with magnetized plasmas.
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The organization of this paper is as follows: Section 2 below
describes the equations of radiative-magnetohydrodynamics and
the flux-limited diffusion method used for obtaining the radiative
force density source term for coupling between the radiation and
MHD equations. Section 3 describes the numerical methods used
to solve the governing equations of RMHD. Numerical tests used
to benchmark the framework are detailed in Section 4. Section 5
discusses our findings and provides general conclusions.

2. RMHD equations

The equations of magnetohydrodynamics in conservative form,
extended with the radiation source terms, are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂(ρv)
∂t
+ ∇ ·

(
ρvv − BB +

(
p +

B · B
2

)
I
)
= fr, (2)

∂e
∂t
+ ∇ ·

((
e + p +

B · B
2

)
v − (B · v)B

)
= v · fr + q̇, (3)

∂B
∂t
+ ∇ · (vB − Bv) = 0. (4)

Here, Equations (1), (2), (3) and (4) when omitting the right-
hand-side terms represent conservation of mass, momentum,
energy and magnetic flux for the plasma, respectively. Equa-
tion (4) describes the time-evolution of the magnetic field given
by Faraday’s law. These equations are supplemented by the
solenoidality condition for the divergence-free magnetic field,
or the Gauss’s law of magnetism, given by

∇ · B = 0. (5)

Here, ρ, v = (vx, vy, vz), e, p and B = (Bx, By, Bz) are the plasma
density, velocity, plasma energy (composed of internal energy,
kinetic energy and magnetic energy), plasma thermal pressure
and magnetic field, respectively. The fr source term on the right-
hand side of the momentum equation is the radiation force den-
sity. In the energy equaton, q̇ is the radiative heating and cooling
term, which is a function of the plasma density, temperature and
the radiation energy. These two terms are evaluated by solving
the radiation energy and radiation momentum evolution equa-
tions described below. The plasma energy can be written in terms
of its components as

e =
p
γ − 1

+
ρv2

2
+

B2

2
. (6)

where v2 = v2
x + v2

y + v2
z and B2 = B2

x + B2
y + B2

z . The constant,
γ = Cp/Cv, is the ratio of specific heats or adiabatic index of
the gas. The relation between plasma temperature, density and
thermal pressure is given by the ideal gas law

p =
kBTg

mpµ
ρ , (7)

where kB is the Boltzmann constant, mp is the mass of a proton, µ
is the mean molecular weight and Tg is the plasma temperature.

The radiation energy equation is solved in the co-moving
frame (CMF) of the fluid. The spatial and time derivatives in

the radiation energy equation shown below are in the inertial
frame, just as in Equations (1)–(5) shown above, but radiation-
related quantities are as evaluated in the CMF. This is because it
is straightforward to compute opacities in the CMF, rather than
the observer’s frame. For a detailed description of transforma-
tion of radiation-related quantities between the inertial lab frame
and co-moving frame, the reader is referred to Appendix A. In
this frame, the frequency-integrated radiation energy equation,
as specified by Mihalas & Mihalas (1984) and Castor (2004), is
given by

∂E
∂t
+ ∇ · (Ev) + ∇ · F + P : ∇v = −q̇, (8)

where E, F and P are the frequency-integrated radiation energy
density, flux vector, and pressure tensor, as evaluated in the CMF,
respectively. The dyadic product P : ∇v is the radiation work
term also known as ‘photon tiring’. This radiation equation is
coupled with Equations (1)–(4) through the heating and cooling
term q̇ and the radiation force density term fr. These terms are
given by

q̇ = cκEρE − 4κPρσT 4
g , (9)

and

fr =
ρκFF

c
, (10)

whereσ is the Stefan-Boltzmann constant, c is the speed of light,
and κP, κE and κF are the Planck, energy density and flux mean
opacities, respectively. For the radiation force vector fr, the flux
mean opacity κF is, in general, dependent on the direction. How-
ever, in this paper, for the sake of simplicity and reproducability,
we ignore these complexities and we assume all of the above
opacities to be equal i.e., κP = κE = κF = κ. In actual astrophys-
ical applications, one typically uses precomputed opacity tables
(valid under certain assumptions, such as e.g. adopting static me-
dia), and it is important to note that our implementation allows
for such treatments. However, as we here want to validate and
introduce standard benchmark cases for the RMHD equations,
we will use constant values for the opacity, thereby deliberately
eliminating many relevant routes for interesting opacity-driven
radiation-matter instabilities. The radiation energy density can
be defined in terms of a radiation temperature as E = arT 4

r
where Tr is the radiation temperature and ar = 4σ/c is the radia-
tion constant. Therefore, under the current assumptions of equal
opacities κ, the heating and cooling term can be reformulated as

q̇ = 4ρκσ(T 4
r − T 4

g ) = cρκar(T 4
r − T 4

g ) . (11)

This term is non-zero when the radiation and plasma temper-
atures are different, i.e. in a state of radiative non-equilibrium.
This is therefore a so-called two-temperature, non-equilibrium
FLD approach (e.g. Mihalas & Mihalas (1984)).

Apart from q̇ and fr, we also need relations for the radiation
flux vector F and pressure tensor P in order to close the set of
RMHD equations. We now close the system of RMHD equations
using the FLD-approximation (Levermore & Pomraning 1981).
In this method, the radiation flux F is written as a diffusive flux
in line with Fick’s diffusion law:

F = −D∇E = −
cλ
ρκ
∇E , (12)

where D = (cλ)/(ρκ) is the diffusion coefficient, with λ being
the so-called flux limiter. We use the flux limiter suggested by
Levermore & Pomraning (1981), given by

λ =
2 + R

6 + 3R + R2 , (13)
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where R is the dimensionless gradient of the radiation energy
density, given by

R =
|∇E|
ρκE
. (14)

R can also be interpreted as the ratio of the photon mean free
path, l = 1/(ρκ), to the radiation energy density scale height,
HR = E/|∇E|. With this formulation, we can see that in the op-
tically thick limit, R → 0, and therefore λ → 1/3. This gives
the proper value of the radiation flux in the diffusive regime,
F = −c∇E/(3ρκ). In the optically thin limit, λ → 1/R, and
the radiation flux also recovers its free-streaming limit value,
|F| → cE. There are several other formulations available for
the flux-limiter λ that retain these properties. For example, the
Minerbo flux-limiter (Minerbo 1978) has also been implemented
and is readily available for use. Lastly, we need a closure relation
for the radiation pressure tensor, P. In the current FLD approach,
P is expressed in terms of the radiation energy density as

P = fE, (15)

where f is the Eddington tensor given by

f =
1
2

(1 − f )I +
1
2

(3 f − 1)n̂n̂. (16)

Here, n̂ = ∇E/|∇E| is the unit vector in direction of the gradi-
ent of radiation energy, I is the unit tensor, and f is the scalar
Eddington factor given by

f = λ + λ2R2. (17)

In the optically thick limit, f → 1/3, whereas in the optically
thin free-streaming limit, f → 1. These radiation energy and
momentum equations and the heating and FLD closure terms
have been described in detail by Moens et al. (2022b).

3. Numerical implementation

The RMHD system is described by Equations (1)–(5) and Equa-
tion (8). The left hand sides of Equations (1)–(4) and the advec-
tion term in Equation (8) are hyperbolic and operate on the gas-
dynamical timescale. They are evaluated using the higher-order,
finite-volume, shock-capturing approximate Riemann solvers al-
ready available in MPI-AMRVAC (Keppens et al. 2023). The HLL
approximate Riemann solver (Einfeldt 1988; Linde 2002) and
the third order weighted non-oscillating (weno3) reconstruction
scheme (Liu et al. 1994) were used for this work. This recon-
struction is operative when evaluating fluxes at cell interfaces,
while all quantities are stored cell-centered.

The other terms, including the divergence of the radiation
flux vector ∇ · F, the radiative force density fr, its work term
v · fr, the heating and cooling term q̇, and the photon tiring term
P : ∇v are typically non-hyperbolic and effectively introduce
stiff source terms. The radiative force density fr = −λ∇E, the
radiation flux vector F = −D∇E, and the flux-limiter λ that
appears in these terms, all depend on the gradient of the radi-
ation energy ∇E. This gradient is numerically calculated using
a fourth order central difference scheme with a five-point sten-
cil (Fornberg 1988). The photon-tiring term P : ∇v, requires the
gradient of the velocity ∇v, which is calculated similarly using
a five-point stencil. The terms fr, v · fr and P : ∇v are added ex-
plicitly as they operate on a dynamical timescale. In typically in-
teresting stellar applications, the q̇ term operates on a timescale

much smaller than the dynamical timescale, and is added im-
plicitly for both Equations (3) and (8). The implicit approach
used for this term involves solving a fourth-degree polynomial
equation which has been described by Moens et al. (2022a) and
Turner & Stone (2001). The radiation divergence term, ∇ · F, is
parabolic in nature and is computed using MPI-AMRVAC’s geo-
metric multigrid method library octree-mg, introduced in Teu-
nissen & Keppens (2019). The incorporation of all these terms,
namely the hyperbolic terms that are computed explicitly, and all
other non-hyperbolic terms that are computed explicitly as well
as implicitly, is done through an operator split implicit-explicit
(IMEX) scheme. The various steps of this IMEX scheme, as well
as the numerical details of computing each of the above terms
have been described by Moens et al. (2022b) and the various
choice of IMEX schemes that MPI-AMRVAC offers are detailed
in Keppens et al. (2023). Here, we use the 3-step ARS3 IMEX
scheme.

It must be noted that, in certain regions such as the transition
regions between optically thin and optically thick regimes, the
coupling terms fr and v · fr can also be significantly stiff. In such
regions, an explicit treatment of these terms, as described above,
can be detrimental to accurately resolving radiation-momentum
coupling. This issue can also be encountered in cases with large
radiation pressures, such as numerical simulations of the inner
regions of an accretion disc of a supermassive black hole (e.g.,
Shakura & Sunyaev (1973); Turner et al. (2003)). There are
methods to deal with the treatment of such terms, such as the
modified Godunov method of Miniati & Colella (2007). This
method was also incorporated by Jiang et al. (2012) into their
RMHD algorithm based on the Variable Eddington Tensor. How-
ever, we do not employ such a technique here and leave such
advancements to future work.

Lastly, in multi-dimensional setups, the discretization of the
solenoidality condition, Equation (5), requires special treatment
to control the discrete divergence of the magnetic field to be at
an acceptable (truncation) level. While choices exist to keep this
to machine precision zero in one prechosen discretization, here
this is done using the parabolic diffusion (linde) method (Kep-
pens et al. 2003, 2023). It must be noted that the Linde method
introduces truncation errors in the magnetic field, and thus in the
magnetic energy density. These errors are more pronounced in
regions with complex magnetic field structures, such as those in-
volving chaotic magnetic reconnection. This can lead to errors
in the numerical evaluation of plasma thermal energies, in turn
leading to artificial heating or cooling in the energy exchange
between plasma and radiation. However, in combination with ef-
fectively high resolution locally (achieved by AMR), these errors
are quite acceptable, and they do not differ substantially when in-
sisting on other means to control monopole errors. MPI-AMRVAC
has ten distinct choices of methods for divergence control as de-
scribed in Keppens et al. (2023). These include the constrained
transport (CT) method (Olivares et al. 2019), Powell source term
method (Powell et al. 1999), Janhunen method (Janhunen 2000),
Generalized Lagrange Multiplier (GLM) method (Dedner et al.
2002) and the multigrid method (Teunissen & Keppens 2019),
among others. A brief comparison between some of these meth-
ods in terms of the magnitudes of the truncation errors produced,
when used in the resistive MHD tilt instability simulation, can
be found in Keppens et al. (2023). AMR, where applicable, is
driven using the Löhner’s criterion (Löhner 1987). It must be
noted that all equations are solved using non-dimensional quan-
tities for all variables, but the full dimensionalization of quanti-
ties is important to mention further on, as opacities will e.g. be
given in dimensional units.
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4. Test cases

This section describes various benchmark tests. Section 4.1 first
presents the radiation-modified Rankine-Hugoniot jump condi-
tions for MHD shocks. We then validate the code with simu-
lations of various categories of stationary radiation-dominated
MHD shock solutions obtained from these jump conditions. Sec-
tion 4.2 studies the energy exchange between plasma and radia-
tion initialized out of radiative equilibrium, through heating and
cooling processes. The code is validated by matching the plasma
energy evolution rates with theoretical predictions. Section 4.3
derives the dispersion relation governing all linear modes in a
stagnant and uniform radiation-plasma background, to quantify
the effect of radiation on slow and fast magnetosonic and Alfvén
modes. We then look at simulations of linear MHD waves in
a radiative equilibrium background medium and compare with
analytical damping rates obtained from the solution of the dis-
persion relation. This is done for a weakly radiative as well as
a strongly radiative background plasma. Section 4.4 adds ra-
diation to standard MHD Riemann shock tube problems and
makes observations on the several waves thus formed. As a final
multi-dimensional application of the code, Section 4.5 considers
radiation-modified magnetoconvection.

4.1. Radiation-modified steady shocks in the diffusion limit

As a first test case, we describe several steady-state, station-
ary, radiation-modified magnetohydrodynamic (RMHD) shocks.
The radiation-modified Rankine-Hugoniot jump conditions for
hydrodynamical shocks in the optically thick diffusion limit have
been discussed by several authors such as Mihalas & Miha-
las (1984), Coggeshall & Axford (1986), Bouquet et al. (2000),
Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008). For
a plane shock contained in the yz−plane, the RMHD generaliza-
tions of these shock frame relations are given by

(ρvx)left = (ρvx)right, (18)

(ρv2
x + p∗ − B2

x)left = (ρv2
x + p∗ − B2

x)right, (19)

(ρvxvy − BxBy)left = (ρvxvy − BxBy)right, (20)

(ρvxvz − BxBz)left = (ρvxvz − BxBz)right, (21)

(Bx)left = (Bx)right, (22)

(Byvx − Bxvy)left = (Byvx − Bxvy)right, (23)

(Bzvx − Bxvz)left = (Bzvx − Bxvz)right, (24)

((e∗ + p∗)vx − Bx(v · B))left = ((e∗ + p∗)vx − Bx(v · B))right. (25)

Here, p∗ is the total pressure, comprising the plasma thermal
pressure, magnetic pressure and the radiation pressure:

p∗ = p +
B2

2
+

E
3
, (26)

where E/3 is the radiation pressure in the diffusion limit. Simi-
larly, e∗ is the total energy density, comprising the plasma inter-
nal energy, kinetic energy, magnetic energy and radiation energy:

e∗ =
p
γ − 1

+
ρv2

2
+

B2

2
+ E. (27)

Also, radiative equilibrium on either side of the shock requires
the radiation and plasma temperatures to be equal:

Eleft = arT 4
g,left, (28)

Eright = arT 4
g,right. (29)

It is possible to manipulate these equations further analytically,
e.g. using the constancy of normal mass flux and magnetic
field component as expressed by Equations (18)-(22). In pure
ideal MHD, they can be further manipulated into the conve-
nient de Hoffmann-Teller frame expressions involving a trans-
formation to a tangentially moving frame, as found in various
textbooks, e.g. Goedbloed et al. (2019). The added radiation
complicates these manipulations significantly, but these shock-
frame Rankine-Hugoniot equations can be solved numerically
to obtain the right state for a given left state. In a pure MHD
case, the steady shock solution would be a discontinuous sin-
gle jump from left to right state obeying Rankine-Hugoniot re-
lations. Here, we expect these radiation-augmented relations to
connect left and right states with non-trivial variations in be-
tween them, which must be computed numerically. Therefore
a combination of left and right states obeying our augmented
Rankine-Hugoniot relations can be used as an initial condition
and then allowed to interact with the radiation and relax to a
steady state solution. These will be good tests for the conserva-
tion properties and robustness of the numerical schemes used.
Five such solution states that satisfy Equations (18)–(29) are
shown in Table (1). In this table, the properties in the left solution
state that can be decided are the density ρ, plasma temperature
Tg, velocity v, and magnetic field B. The radiation temperature
Tr equals the plasma temperature, and the pressure must satisfy
Equation (7). The ratio of the thermal to the magnetic pressure
is given by β. The dimensionless numbers Ms, Ma and Mf are
the slow magnetosonic, x-Alfvén and fast magnetosonic Mach
numbers, respectively. The Mach numbers that jump from higher
than 1 to lower than 1 across the shock are marked in bold for
each case. In this table, the physical length of the computational
domain, L, is also given for each case. The value of L must be
chosen such that it is sufficient to capture the thickness of the
shock for the given left and right states and opacity κ. These 5
shocks are simulated in the optically thick diffusion limit for this
case. For all these shocks, the computational domain was made
up of 256 cells on the initial mesh, and 5 AMR levels were used,
leading to an effective resolution of 4096 cells. Zero-gradient
boundary conditions are applied at the left and right boundaries.
A mean molecular weight of µ = 0.5 and a constant background
opacity of κ = 0.4 cm2/g is used for all these shock solutions,
unless otherwise specified.

Note that RHD shocks are special cases of the above rela-
tions with vanishing magnetic field throughout. As we are not
aware of steady RMHD shock tests in the literature that we
can readily reproduce, the first test here is a Mach 3 radiation-
dominated, purely hydrodynamic 1D shock without any mag-
netic field, as described by Jiang et al. (2014). The relaxed shock,
obtained after several passing times is shown in Figure (1).
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Fig. 1. Normalized density, x-velocity, plasma pressure, plasma temperature and radiation energy profiles computed for the relaxed state of the
hydrodynamic shock. The semi-analytic solution of Lowrie & Rauenzahn (2007) is also shown as a dashed red line.

For comparison, Figure (1) also shows the diffusion limit semi-
analytic solution for radiative shocks, as described in the work
of Lowrie & Rauenzahn (2007). This shows a very strong match
between the semi-analytic and numerical solutions. When the
shape of the shock stopped changing visually and reached a clear
steady state, the simulation was stopped. Unlike ideal hydro-
dynamic and magnetohydrodynamic shocks which are simple
discontinuities, radiation-dominated shocks have a much more
complicated structure. Radiation diffuses upstream of the shock,
causing the plasma immediately upstream of the shock to heat
up and form a precursor region in plasma and radiation tem-
peratures. The other plasma properties such as density, velocity
and pressure, vary smoothly and monotonously in this precursor
region, before undergoing a discontinuous jump at the shock.
We notice that the plasma and radiation temperatures exceed
their respective downstream value at the end of the precursor re-
gion. This phenomenon is called a Zel’dovich spike (Zel’dovich
& Raizer 1967; Mihalas & Mihalas 1984), and is followed by
a relaxation region where they cool down to the downstream
values. This Zel’dovich spike is shown in a magnified view in
the insets of the plasma temperature and radiation energy solu-
tions. Although the semi-analytic solution of Lowrie & Rauen-
zahn (2007) does not include a Zel’dovich spike, they provide
an approximate model to calculate the plasma temperature of the
spike. Using this model, the non-dimensional, analytical, plasma
temperature we obtain for the spike is 0.26961, which is some-
what higher than that found in the numerical solution of Fig-
ure (1). This relaxation region is much smaller than the precur-

sor region. If the downstream plasma temperature is larger than
the plasma temperature immediately upstream of the shock at
the end of the precursor region, the shock is called a subcritical
shock. This shock is one such subcritical shock.

We now introduce various actual RMHD steady shock so-
lutions, chosen to illustrate the variety of shock types familiar
from MHD only. Our first RMHD shock consists of a fast mag-
netosonic shock, where the plasma goes from an upstream su-
perfast (Mf > 1) state to a downstream subfast, but still super-
Alfvénic (Mf < 1, Ma > 1) state. The numerically settled solu-
tion for this fast shock case, is shown in Figure (2). The upstream
flow is a superfast magnetically dominated flow, thus β < 1.
The plasma temperature undergoes a monotonous increase in the
precursor region, without overshooting the downstream value.
All other plasma properties undergo a smooth transition with
an ever-increasing slope in the precursor region, eventually ap-
proaching their respective downstream values. In the upstream
region, the radiation pressure is negligible as compared to the
plasma thermal pressure. In the downstream region, however,
the radiation pressure dominates the plasma thermal pressure by
an order of magnitude. A defining characteristic of a fast mag-
netosonic shock is the increase in magnitude of the tangential
magnetic field components in the downstream region. This can
be clearly observed in the By and Bz profiles in Figure (2), as well
as in Table (1). This increase in the tangential magnetic field
causes the magnetic field vector to bend away from the shock
normal in the downstream region, as can be seen in Figure (2).
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Our second RMHD test consists of a slow magnetosonic
shock, where the plasma goes from an upstream superslow, sub-
Alfvénic state (Ma < 1,Ms > 1) to a downstream subslow state
(Ms < 1). The shock solution for this subcase is shown in Fig-
ure (3). Similar to the earlier hydrodynamic shock, we notice
a Zel’dovich spike in the plasma and radiation temperatures, as
shown in the insets of the plasma temperature and radiation en-
ergy solutions, whereas all other properties vary smoothly and
monotonously in the precursor region before undergoing a dis-
continuous jump. From the temperature profile, we infer that this
shock is subcritical. An interesting feature of this shock is that it
connects a magnetic pressure-dominated (β < 1) upstream state
to a plasma pressure-dominated (β > 1) downstream state. As is
expected in a slow magnetosonic shock, the tangential magnetic
field components decrease in magnitude in the downstream re-
gion. This also causes the magnetic field vector to bend towards
the shock normal, as can be seen in Figure (3).

Next, we turn attention to an intermediate magnetosonic
shock, where the plasma goes from an upstream, low-β, super-
Alfvénic (Mf < 1, Ma > 1) state to a downstream subslow
state (Ms < 1). A constant background opacity of κ = 200
cm2/g is used for this case. The shock solution obtained is
shown in Figure (4). In such an intermediate shock, the tan-
gential magnetic field flips its direction across the shock, as
seen by the sign changes of By and Bz in Figure (4) and in Ta-
ble (1). This causes the magnetic field vector to flip across the
shock normal in the downstream region. This case involves a
precursor region and a short but observable relaxation region.
The plasma accelerates to a higher velocity in the precursor re-
gion, before undergoing sudden deceleration through the shock.
The density, thermal pressure and normal velocity undergo rel-
atively smaller jumps through the shock, and most of the tran-
sition to their far downstream values occurs in the relaxation
region. After going through the shock, the tangential velocity
and magnetic field components overshoot their far downstream
values, before monotonically approaching their downstream val-
ues in the relaxation region. The plasma temperature undergoes
a monotonous transition between the upstream and downstream
values. The radiation energy increases with an increasing slope
in the precursor region, but shows a linear increase in the re-
laxation region. This can be observed in the magnified view in
the inset of the radiation energy solution shown in Figure (4).
The thermal pressure dominates the radiation pressure on the
upstream side, whereas the radiation pressure dominates by an
order of magnitude on the downstream side.

To demonstrate we can handle special RMHD shock solu-
tions as well, we simulate a switch-off slow shock formed by
a high-β, superslow, Alfvénic (Ms > 1, Ma = 1) upstream
plasma decelerating through a shock to a subslow downstream
state (Ms < 1). The shock solution for this case is shown in Fig-
ure (5). As the name suggests, in a switch-off shock, the tangen-
tial magnetic field components become zero after going through
the shock, causing the magnetic field vector to align with the
shock normal in the downstream region. The plasma transitions
from a highly magnetically dominated (β << 1) upstream state
to a plasma pressure-dominated downstream state (β > 1). It
must also be noted that the slow magnetosonic speed equals the
x-Alfvén speed in the downstream region, since the tangential
magnetic field vanishes.

In all the stationary shock simulations shown here, the dif-
fusion limit i.e. λ = 1/3 was assumed. However, we also ran all
these with full FLD, using the flux limiter suggested by Lever-
more & Pomraning (1981). The shock structure stayed the same
and well within the diffusion limit, with minor changes in the

value of λ. The maximum change in λ observed for the hydrody-
namic, fast magnetosonic, slow magnetosonic, intermediate and
slow switch-off shock was 1.6%, 28%, 0.011%, 0.13% and 3.4%,
respectively.

In order to demonstrate the capability of the code to handle
moving shocks, the fast magnetosonic shock described above is
also simulated on an inertial frame moving at a constant velocity.
Here, the frame moves at a constant velocity along the leftward
direction perpendicular to the shock front. The shock therefore
proceeds to the right. The right state, shown in Table (1), is used
as the initial condition throughout the domain. A zero-gradient
boundary condition is imposed at the right boundary. At the left
boundary, the left state is used as a fixed boundary condition to
generate and drive the shock. The frame is assumed to move at
a velocity of 5 × 107 cm/s to the left, with respect to the shock
frame, and this velocity must be added to the stationary shock
velocities shown in Table (1). With this added velocity, the left
and right state plasma velocities are now 1.05 × 109 cm/s and
2.01157 × 108 cm/s, respectively. All other properties remain
the same as in Table (1). The shock is created from the initial
discontinuity located at the left boundary, and is expected to re-
lax into the non-trivial structure seen in Figure (2) as it moves
to the right. Figure (6) shows snapshots of plasma density, x-
velocity, y-velocity, z-velocity and plasma pressure solutions at
non-dimensional times t = 1.0, t = 2.0, t = 3.0, t = 7.0, t = 11.0
and t = 15.0. The corresponding snapshots for y-magnetic field,
z-magnetic field, plasma temperature and radiation energy den-
sity solutions are shown in Figure (7). At t = 15.0, the shock has
reached its terminal, relaxed state at x = 0.25. This corresponds
to x = 2.5 × 104 cm and t = 1.5 ms in dimensional form.

4.2. Heating and cooling

We now test the process of energy exchange between plasma and
radiation through the heating and cooling term q̇. A 2D station-
ary, non-magnetized plasma is considered with uniform proper-
ties and zero velocity. The density of the gas is taken to be ρ0
= 10−7 g/cm3. The adiabatic index is γ = 5/3, the opacity is
κ = 0.4 cm2/g and the mean molecular weight is µ = 0.6. The
computational domain consists of 10 cells per direction. Initially,
the plasma and radiation energies are out of radiative equilibrium
i.e. the plasma and radiation temperatures are different. The to-
tal energy, i.e. the sum of the plasma thermal energy and radi-
ation energy is initially taken to be (e0 + E0) = 1012 erg/cm3.
Given the total energy, for a given density, it is possible to find
the equilibrium temperature, Teq, by equating the total energy to
the sum of e = ρkBTeq/(mpµ) and E = arT 4

eq. The correspond-
ing plasma thermal energy at equilibrium is found out to be eequi

= 6.89706 × 107 erg/cm3. The thermal energy of the stationary
plasma considered here would eventually reach this value, af-
ter exchanging energy with radiation through heating or cooling
processes.

We consider two different scenarios in terms of the initial
value of the plasma thermal energy density. In the first scenario,
the initial plasma thermal energy is taken to be ei = 10−2eequi, i.e.
the plasma is cooler than the radiation and is expected to absorb
energy from radiation through heating until radiative equilib-
rium is achieved. In the second scenario, we have ei = 102eequi,
and therefore the initially hotter plasma is expected to expel the
excess energy through cooling and reach equilibrium. For both
these conditions, the initial radiation energy density can be cal-
culated by subtracting the initial plasma thermal energy density
from the total energy density i.e. Ei = e0 + E0 − ei. We initial-
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Table 1. Initial states for radiation-modified shocks that satisfy the Rankine-Hugoniot relations for RMHD, and length of computational domain
for each case. The Mach numbers marked in bold are those that jump from higher than 1 to lower than 1 across the shock.

Hydrodynamic shock (γ = 5/3)
Variable Left state Right state
ρ (g/cm3) 1.0 × 10−2 3.06495 × 10−2

Tg, Tr (K) 1.08899 × 106 3.83849 × 106

vx (cm/s) 5.19271 × 107 1.69422 × 107

vy (cm/s) 0.0 0.0
vz (cm/s) 0.0 0.0

Bx (Gauss) 0.0 0.0
By (Gauss) 0.0 0.0
Bz (Gauss) 0.0 0.0
p (erg/cm3) 1.79762 × 1012 1.94203 × 1013

E (erg/cm3) 1.06401 × 1010 1.64244 × 1012

β undefined undefined
Ms undefined undefined
Ma undefined undefined
Mf 3.0 0.52135

L (cm) 2 × 105

Fast magnetosonic shock (γ = 1.4) Slow magnetosonic shock (γ = 1.4)
Variable Left state Right state Left state Right state
ρ (g/cm3) 1.0 × 10−2 6.60865 × 10−2 3.06495 × 10−2 8.82626 × 10−2

Tg, Tr (K) 1.0 × 104 4.14098 × 107 3.83849 × 106 7.47109 × 106

vx (cm/s) 1.0 × 109 1.51157 × 108 5.0 × 107 1.73627 × 107

vy (cm/s) 5.0 × 108 5.02805 × 108 5.0 × 106 −3.94698 × 107

vz (cm/s) 2.0 × 106 8.77613 × 105 2.0 × 106 1.08940 × 107

Bx (Gauss) 3.54491 × 106 3.54491 × 106 3.54491 × 107 3.54491 × 107

By (Gauss) 1.77245 × 107 1.17215 × 108 3.54491 × 107 1.12909 × 107

Bz (Gauss) −7.08982 × 106 −4.68853 × 107 −7.08982 × 106 −2.25819 × 106

p (erg/cm3) 1.65088 × 1010 4.52107 × 1014 1.94203 × 1013 1.08851 × 1014

E (erg/cm3) 7.56570 × 101 2.22465 × 1016 1.64244 × 1012 2.35713 × 1013

β 1.10059 × 10−3 7.11318 × 10−1 1.90414 × 10−1 1.96925 × 100

Ms 3605.09235 67.36428 2.48298 0.55544
Ma 100 38.85895 0.87535 0.51583
Mf 18.25063 0.89141 0.59183 0.38805

L (cm) 105 105

Intermediate magnetosonic shock (γ = 1.4) Slow switch-off shock (γ = 1.4)
Variable Left state Right state Left state Right state
ρ (g/cm3) 1.16963 × 10−4 4.39947 × 10−4 7.96933 × 10−3 3.06381 × 10−2

Tg, Tr (K) 3.46709 × 105 5.94400 × 106 6.14135 × 103 1.12616 × 107

vx (cm/s) 9.82668 × 107 2.61249 × 107 3.98682 × 107 1.03724 × 107

vy (cm/s) −1.74756 × 108 −6.48489 × 107 3.22643 × 106 −1.43474 × 108

vz (cm/s) 3.61511 × 108 1.41697 × 108 4.95596 × 106 2.94061 × 107

Bx (Gauss) 3.54491 × 106 3.54491 × 106 1.26166 × 107 1.26166 × 107

By (Gauss) −3.77898 × 106 6.99041 × 105 4.64246 × 107 0.0
Bz (Gauss) 7.55796 × 106 −1.39808 × 106 −7.73743 × 106 0.0
p (erg/cm3) 6.69468 × 109 4.31669 × 1011 8.07981 × 109 5.69535 × 1013

E (erg/cm3) 1.09323 × 108 9.44419 × 1012 1.07623 × 101 1.25792 × 1014

β 2.00356 × 10−3 7.22803 × 10−1 8.55309 × 10−5 8.99233 × 100

Ms 28.39485 0.54797 129.24135 0.51006
Ma 1.06275 0.50139 1 0.51006
Mf 0.41088 0.47132 0.25892 0.20330

L (cm) 105 106

ize the system with these values and let it relax until equilibrium
is achieved. For the heating case, ei increases while Ei decreases
with time, with both reaching their respective equilibrium values
after some time. For the cooling case, the trend is opposite. Since
for both scenarios ei ≪ 1012 erg/cm3, Ei stays ≈ 1012 erg/cm3

throughout the entire simulation. In this case, the radiation field
is effectively a large reservoir, that plays the role of a heat source
or sink. The time evolution of the plasma thermal energy density
for both scenarios is shown on a logarithmic scale in Figure (8),
along with expected, semi-analytical evolution profiles. The case
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Fig. 2. Normalized density, x-velocity, y-velocity, z-velocity, plasma pressure, y-magnetic field, z-magnetic field, plasma temperature and radiation
energy density profiles computed for the relaxed state of the fast magnetosonic shock.

with ei = 102eequi seems to lag behind the semi-analytical solu-
tion in the beginning i.e. the plasma cools slower than expected.
However, the observed solution eventually catches up with the
semi-analytical solution and asymptotes to equilibrium at the ex-
pected rate. On the other hand, the case where ei = 10−2eequi
seems to perfectly align with the semi-analytical solution. This
test was also performed with a background uniform magnetic
field, and it was verified that the presence of a uniform magnetic
field makes no difference to the results.

4.3. Linear RMHD waves

It is well known that acoustic and, in general, magnetoacous-
tic waves may undergo damping when propagating in a radia-
tive background field. Mihalas & Mihalas (1984) performed a
linear perturbation analysis of the RHD equations in the opti-
cally thick diffusion limit. They derived a dispersion relation
to quantify the damping rates of acoustic waves in a radiative
medium. In this section, we consider the magnetohydrodynamic
generalization of such a dispersion relation for magnetoacous-
tic and Alfvén waves in a radiative medium. Travelling waves
are then set up in a magnetized, radiative, stagnant background
plasma and their various damping rates are observed. We then
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Fig. 3. Normalized density, x-velocity, y-velocity, z-velocity, plasma pressure, y-magnetic field, z-magnetic field, plasma temperature and radiation
energy density profiles computed for the relaxed state of the slow magnetosonic shock.

validate our simulation results by comparing the observed damp-
ing rates with those obtained analytically from the dispersion re-
lation. Note that we will here linearize the governing RMHD set
about a static uniform medium, while more general lineariza-
tions about a 1D gravitationally stratified medium exist, as pre-
sented by Blaes & Socrates (2003). Our results connect directly
with linear ideal MHD dispersion relations found in textbooks
(Goedbloed et al. 2019), and may clarify the relation between
the thermal instability resulting from optically thin radiative loss
prescriptions (Claes & Keppens 2019) with the various unsta-
ble modes already identified in radiative media. For a complete
derivation of the dispersion relation, the reader is referred to Ap-
pendix B.

This dispersion relation, as shown in Equation (87), is a
polynomial of order 8, as expected. For a uniform background
medium and constant opacity κ, Equations (49) and (53) from
Blaes & Socrates (2003) are equivalent to the above dispersion
relation for the magnetohydrodynamic and hydrodynamic cases,
respectively. We can clearly see that the dispersion relation fac-
torizes into quadratic and hexic polynomials of ω. The quadratic
polynomial factor gives the familiar Alfvén mode solution
ω

k
= ±vA,x,0. (30)

This means that the Alfvén mode has no imaginary component
of ω and is therefore a simple forward and backward travel-
ling wave without any exponential growth or decay. Therefore,
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Fig. 4. Normalized density, x-velocity, y-velocity, z-velocity, plasma pressure, y-magnetic field, z-magnetic field, plasma temperature and radiation
energy density profiles computed for the relaxed state of the intermediate magnetosonic shock.

in the current diffusion approximation, this mode is not influ-
enced by the radiative terms (the reader is referred to the work
by Driessen et al. (2020) demonstrating radiation-driven damp-
ing of Alfvén modes). The remaining 6 modes in Equation (87)
reduce to the standard MHD dispersion relation covering the
(marginal) entropy mode, and the slow and fast pairs, augmented
with a marginal frequency ω = 0 (the remnant of the radiative
diffusion mode) if all radiative terms vanish (i.e. all derivatives
of q̇ vanish). In future work, it will be of interest to study how the
thermal instability (related to the entropy mode, which can cause
solar coronal condensations like prominences), and the added ra-
diative diffusion mode relate in more general settings.

To use this dispersion relation to validate our RMHD imple-
mentation, we first consider, a static 1D weakly radiative plasma
with plasma settings given by ρ0 = 3.216 × 10−9 g/cm3, p0 =
17.34 × 103 erg/cm3 and B0 = (330.14, 0, 330.14) Gauss. The
heat capacity ratio is γ = 5/3, and the mean molecular weight
is µ = 0.5. The radiation energy density, E0 = 8.60834 × 103

erg/cm3, can be obtained from the radiative equilibrium condi-
tion by equating the radiation temperature to the plasma temper-
ature. The plasma beta is β = 1. The length of the computational
domain is 40λw, where λw is the wavelength of the wave ex-
cited at the left boundary. The computational grid is made up of
3200 cells, and AMR was not used for this case. At the right-
hand side boundary, a Dirichlet boundary condition is used for
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Fig. 5. Normalized density, x-velocity, y-velocity, z-velocity, plasma pressure, y-magnetic field, z-magnetic field, plasma temperature and radiation
energy density profiles computed for the relaxed state of the slow switch-off magnetosonic shock.

the radiation energy density, whereas Neumann boundary con-
ditions are applied on all other properties. Using the code’s ca-
pacity to handle interior boundaries, we actually overwrite the
first wavelength within the domain with the purely ideal MHD
time-dependent linear wave solution for various kinds of right-
travelling waves, as described below, and their interactions with
the background radiation field are observed as they propagate to
the right. For each of these waves, the wavenumber, k = 2π/λw,
is chosen in such a way that for the constant background opac-
ity, κ = 0.4 cm2/g, the optical depth given by τλw = κρ0λw is 103.
For the above values, λw = 7.77363 × 1011 cm, and therefore,
k = 8.08269 × 10−12 cm−1.

As a first test, an Alfvén wave is excited. The eigenfunc-
tions for the Alfvén wave are obtained by setting ω/k to the
background x−Alfvén speed shown in Equation (86), and ne-
glecting all heating and radiation terms. For this value of ω,
and since By,0 = 0, we can fix the v̂y perturbation, while the
y-magnetic field perturbation can be obtained in terms of v̂y as
B̂y = −(Bx,0k/ω)v̂y. Using these perturbations, the following
wave settings are used at the left interior boundary of the do-
main:

vy,1 = v̂ysin(kx − ωt), (31)

By,1 = B̂ysin(kx − ωt). (32)
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Fig. 6. Normalized density, x-velocity, y-velocity, z-velocity and plasma pressure profiles computed for the moving fast magnetosonic shock at
times t = 1.0, t = 2.0, t = 3.0, t = 7.0, t = 11.0 and t = 15.0.

All other perturbations are zero i.e., ρ̂ = v̂x = v̂z = p̂y =

B̂z = Ê = 0. We use a non-dimensional v̂y value of 10−2. Fig-
ure (9) shows the propagation of the vy and By components of
the Alfvén wave, after it crossed the right-hand side boundary of

the computational domain. As discussed earlier, the Alfvén so-
lution is completely decoupled from the rest of the eigensystem.
It is therefore unaffected by the radiation and heating terms and
propagates across the domain without undergoing any damping
or instability.
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Fig. 7. Normalized y-magnetic field, z-magnetic field, plasma temperature and radiation energy density profiles computed for the moving fast
magnetosonic shock at times t = 1.0, t = 2.0, t = 3.0, t = 7.0, t = 11.0 and t = 15.0.

Table 2. Eigenfrequency solutions (s−1) to the dispersion relation
in Equation (87), for the given background plasma properties and
wavenumber, for the weakly radiative case.

Mode Value (s−1)
Fast magnetosonic −2.45528 × 10−5 − 4.10666 × 10−7i

Alfvén −1.32737 × 10−5

Slow magnetosonic −1.01617 × 10−5 − 7.05868 × 10−8i
Thermal 0.0 − 2.88146 × 10−4i

Radiative diffusion 0.0 − 8.96558 × 101i
Slow magnetosonic 1.01617 × 10−5 − 7.05868 × 10−8i

Alfvén 1.32737 × 10−5

Fast magnetosonic 2.45528 × 10−5 − 4.10666 × 10−7i

Table 3. Eigenfrequency solutions (s−1) to the dispersion relation
in Equation (87), for the given background plasma properties and
wavenumber, for the strongly radiative case.

Mode Value (s−1)
Fast magnetosonic −3.30517 × 10−5 − 3.50913 × 10−6i

Alfvén −1.32737 × 10−5

Slow magnetosonic −1.19404 × 10−5 − 1.27523 × 10−7i
Thermal 0.0 − 4.76828 × 10−4i

Radiative diffusion 0.0 − 8.36612 × 102i
Slow magnetosonic 1.19404 × 10−5 − 1.27523 × 10−7i

Alfvén 1.32737 × 10−5

Fast magnetosonic 3.30517 × 10−5 − 3.50913 × 10−6i
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Fig. 8. Time evolution of plasma energy density for a plasma initialized
with ei = 102eequi (cooling) and ei = 10−2eequi (heating). The red and
blue dashed lines are the semi-analytical solutions for the cooling and
heating cases, respectively. The black dashed line shows the equilibrium
plasma thermal energy. Due to the logarithmic scaling of the time axis,
the initial conditions at t = 0 are not seen here.

Fig. 9. y-velocity (top) and y-magnetic field (bottom) perturbation com-
ponents of the Alfvén wave.

Fig. 10. Complex eigenfrequency plane showing the solutions (solid
dots) to the dispersion relation in Equation (87), for the given back-
ground plasma properties and wavenumber. The top and bottom pan-
els show the solutions for the weakly and strongly radiative cases, re-
spectively. Green, red, blue, purple and black show the slow, Alfvén,
fast, thermal and radiative diffusion modes, respectively. The inset plot
shows all modes except the Alfvén mode using a logarithmic scale to
compare the relative magnitudes of the imaginary components of their
eigenfrequencies.

Similarly, fast and slow magnetosonic waves, in two separate
tests, are excited. The corresponding eigenfunctions are obtained
by setting ω/k to the background ideal MHD fast or slow mag-
netosonic speed, depending on the case. These magnetosonic
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speeds are given by

c f /s,0 =

√
(c2

g,0 + v2
A,0) ±

√
((c2

g,0 + v2
A,0)2 − 4c2

g,0v2
A,x,0)2)

2
, (33)

where the ‘+’ sign is for the fast wave and the ‘-’ sign is for
the slow wave. For exciting these waves in a way that avoids gas
(and hence radiation) temperature variations, the adiabatic sound
speed cg, was replaced with the isothermal sound speed, ciso in
the above equation. Again, the heating and radiation terms are
neglected for setting up these eigenfunctions. Fixing with a sim-
ple sinusoidal plane wave ρ̂ perturbation, all other perturbations
can be written in terms of ρ̂ as follows:

v̂x =

(
ω

k

)
ρ̂

ρ0
, (34)

p̂ = (c2
g,0)ρ̂, (35)

v̂z =
(Bz,0/Bx,0)(ω/k)(
1 − (ω/k)2/v2

A,x,0

) ρ̂
ρ0
, (36)

B̂z =
Bz,0(

1 − v2
A,x,0/(ω/k)2

) ρ̂
ρ0
. (37)

For By,0 = 0, the v̂y and B̂y perturbations are both zero i.e.,
v̂y = B̂y = 0. We use a non-dimensional ρ̂ value of 10−2 for
both the fast and slow magnetosonic wave tests. For the given
values of the background plasma properties, the dispersion rela-
tion can be solved and all roots can be quantified. These 8 solu-
tions are tabulated in Table (2) and shown on the complex eigen-
frequency plane in the top panel of Figure (10). The imaginary
components of the ω solutions, corresponding to the slow and
fast magnetosonic speeds are ωIm,slow = 7.05868 × 10−8s−1 and
ωIm, f ast = 4.10666× 10−7s−1, respectively. The analytical damp-
ing rate per unit length, ωIm/(ω/k) is therefore ωIm,slow/cs,0 =
5.61643 × 10−14cm−1 and ωIm, f ast/c f ,0 = 1.35347 × 10−13cm−1

for the slow and fast waves, respectively. Figures (11) and (12)
show the results for the slow and fast waves, respectively. The
expected, theoretical damping of the density perturbation ampli-
tude is also plotted along with the observed results. The observed
and theoretical results show an excellent match, for both the slow
and fast magnetosonic waves.

We next consider the damping of waves in a radiation-
dominant 1D static background plasma. The initial plasma set-
tings are ρ0 = 3.216×10−9 g/cm3, p0 = 43.35×103 erg/cm3 and
B0 = (330.14, 0, 330.14) Gauss. With the higher pressure, the
initial radiation energy density is now E0 = 336.26331 × 103

erg/cm3, according to the radiative equilibrium condition. All
other parameters such as µ γ, k, τλw , λw and κ are the same
as in the weakly radiative case described above. The boundary
conditions and the prescription for exciting the right-travelling
waves are also the same. The computational domain is composed
of 3200 cells. The solutions of the resultant dispersion relation,
corresponding to these background conditions are tabulated in
Table (3) and shown on the complex eigenfrequency plane in the
bottom panel of Figure (10). The analytical damping rate per unit
length is now ωIm,slow/cs,0 = 8.64217 × 10−14cm−1 for the slow
magnetosonic wave and ωIm, f ast/c f ,0 = 8.58803× 10−13cm−1 for

the fast magnetosonic wave. Since the damping is an order of
magnitude higher for the fast wave, the computational domain
used for the fast wave damping case is 10λw, opposed to 40λw
for the slow case damping case. The ρ, vx and E solutions, su-
perimposed with the theoretical damping, for the slow and fast
waves are shown in Figures (13) and (14), respectively. For the
slow wave, the case was run with a range of mesh resolutions
(800, 1600, 2400 and 3200 cells), to observe the effect of grid
sizes on the observed damping rates. A magnified version of the
density solution from Figure (13) is shown in Figure (15), show-
ing a single half-cycle of the damped slow magnetosonic wave,
along with the theoretical, expected damping of the wave ampli-
tude. This is also superimposed with the corresponding results
obtained using 800, 1600 and 2400 cells. It is observed that the
crest of the half-cycle approaches the theoretical damped am-
plitude with increasing resolution. The % errors in the observed
damping rates with respect to the theoretical rate, for these var-
ious grid resolutions, are plotted as a function of grid resolution
in Figure (16).

4.4. Radiation-modified Riemann shock-tube problem

We now move over to RMHD Riemann shock tube problems.
We add radiation to two standard ideal MHD examples, namely
the 1.5D case studied by Brio & Wu (1988), and the 1.75D case
studied by Torrilhon (2003). The initial left and right states for
both cases and their non-dimensional equivalent values are given
in Table (4). All velocity components are zero initially for both
cases. For the Brio-Wu case, the z−magnetic fields are also zero.
In this table, the physical length of the computational domain L,
is also given for each case. A mean molecular weight of µ = 0.5
and a constant background opacity of κ = 400 cm2/g is used
here. The adiabatic index is also listed. The initial computational
grid is made up of 1024 cells, and 7 AMR levels are used, leading
to an effective resolution of 65536 cells. Zero-gradient boundary
conditions are applied at both boundaries for all variables. With-
out the radiation energy, these cases are identical to the ideal
MHD cases by Brio & Wu (1988) and Torrilhon (2003), respec-
tively. This can be clearly observed from the non-dimensional
values in Table (4).

The solutions at time t = 4697.96 s for the radiative Brio-
Wu case, equivalent to the non-dimensional value of t = 0.2, are
shown in Figure (17). The solid black line is the radiative so-
lution with full FLD on, in order to allow the flow to switch
between the optically thin (freestreaming) and optically thick
(diffusion limit) regimes. The dot-dashed line is the radiative so-
lution simulated in the diffusion limit. The non-radiative, ideal
MHD solution by Brio & Wu (1988) is also shown as a solid red
line for comparison, wherever applicable. This case consists of
5 waves from left to right: a fast rarefaction, a slow compound
wave, a contact discontinuity, a slow shock, and a fast rarefac-
tion wave. For the diffusion limit, the fast rarefaction to the right
is replaced by a fast shock. Similarly, solutions for the radiative
Torrilhon case, are shown in Figure (18), for time t = 103.876
s, equivalent to the non-dimensional value of t = 0.4. As earlier,
the solid black, dot-dashed and solid red lines represent the full-
FLD, diffusion limit, and non-radiative solutions, respectively.
The following seven waves are clearly detectable from left to
right: a fast rarefaction, a rotational discontinuity, a slow rar-
efaction, a contact discontinuity, a slow magnetosonic shock, a
rotational discontinuity, and finally a fast magnetosonic shock.
Across the rotational discontinuities, the y- and z- velocities and
magnetic fields undergo a jump whereas the density, x−velocity,
plasma pressure do not jump. The z−velocity and z−magnetic
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Fig. 11. The density, x-velocity, z-velocity, plasma pressure, z-magnetic field and radiation energy density perturbation components for the fast
magnetosonic wave, for the weakly radiative background plasma. The analytical, expected damping of the perturbation magnitude is also plotted
as a solid purple line, for comparison with simulation results.
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Fig. 12. The density, x-velocity, z-velocity, plasma pressure, z-magnetic field and radiation energy density perturbation components for the slow
magnetosonic wave, for the weakly radiative background plasma. The analytical, expected damping of the perturbation magnitude is also plotted
as a solid purple line, for comparison with simulation results.
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Fig. 13. The density, x-velocity and radiation energy density perturbation components for the slow magnetosonic wave, for the strongly radiative
background plasma. The analytical, expected damping of the perturbation magnitude is also plotted as a solid purple line, for comparison with
simulation results.

Fig. 14. The density, x-velocity and radiation energy density perturbation components for the fast magnetosonic wave, for the strongly radiative
background plasma. The analytical, expected damping of the perturbation magnitude is also plotted as a solid purple line, for comparison with
simulation results.

field do not change across the fast rarefaction wave towards the
left. For both these cases, we observe that for the ideal MHD
case, only the density jumps across the contact discontinuity
whereas for the radiative case in the diffusion limit, the den-
sity and the plasma thermal pressure both jump. This major dis-
tinction between the non-radiative and radiative cases is due to
the contribution of the radiation energy to total pressure. In the
freestreaming (e.g. ideal MHD) limit, when λ = 0, the radiation
passes freely through the plasma without exerting any pressure
on the plasma and there is therefore no coupling between the ra-

diation pressure and plasma momentum. On the other hand, in
the diffusion limit, when λ = 1/3, the radiation exerts a radiation
pressure of E/3 on the plasma and is thus strongly coupled with
the plasma momentum. In this case, the effective total pressure
experienced by the plasma is a sum of these pressure contribu-
tions, (p+E/3). Hence, across the contact discontinuity, the equi-
librium force balance requires the sum (p + E/3) to remain un-
changed. This explains the absence of a jump in (p+E/3) across
contact discontinuities, as is observed in the diffusion limit solu-
tions in Figures (17) and (18), while the individual components p
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Fig. 15. A magnified version of the density solution from Figure (13),
showing a single half-cycle of the damped slow magnetosonic wave.
The analytical, expected damping of the perturbation magnitude is
also plotted as a solid purple line. Corresponding results from coarser
meshes comprising 800, 1600 and 2400 cells are also shown.

Fig. 16. Percent error in the observed damping rates with respect to the
theoretical rate, for the slow magnetosonic wave damped by a strongly
radiative background plasma.

and E/3 both undergo jumps. With FLD, the coupling is partial,
and the effective radiation pressure experienced by the plasma is
less than E/3. We therefore see a jump in (p + E/3) across the
contact discontinuity in the FLD solutions of Figures (17) and
(18).

Magnified versions of the density solutions, superimposed
with the flux-limiter λ, and the radiation energy density solu-
tions, superimposed with the AMR level, for the Brio-Wu test
are shown in Figure (19) for the full FLD case. The various
wave locations are also marked here (dotted lines across the span
of the rarefaction and compound waves, and dash-dot-dot lines
for the discontinuities). Similar plots for the Torrilhon test are
shown in Figure (20), also including the By solution. For both
tests, the AMR does a good job in capturing the various waves
created, reaching the highest refinement level at the discontinu-
ities. For both these tests, we observe that λ stays at its diffusion
limit value of 1/3 in regions with zero radiation energy density
gradients, while showing clear variation at shocks and contact
discontinuities. For the Torrilhon test, λ shows a spike also at
the two rotational discontinuities. This is due to very small re-
maining variations in E, which are too small to be observed in
Figure (20). These arise due to the difficulty in the exact captur-
ing of rotational discontinuities in the numerical schemes used.
This is a challenge left for future work, as we do not expect any
λ variation across them, where E should remain constant. This
also necessitated the extreme use of AMR on this simple 1D ex-
periment, as too low effective resolutions can show unphysical
oscillatory behavior in especially λ (i.e. related to the gradient
of E, which we evaluate numerically), as also impacted by the
choice of limiter used in center-to-edge reconstructions. In the
rarefaction regions, λ switches to its freestreaming value of ∼ 0
for the Torrilhon case, while showing a smooth transition be-
tween the optically thick and thin regimes for the Brio-Wu case.
We must note that the λ value also depends on the density, opac-
ity and (dimensionalized) length scale of the problem. Higher
values of these drive λ closer to the optically thick regime, while
lower values bring it closer to the freestreaming regime.

4.5. 2D Magnetoconvection with radiation

We simulate the case of two-dimensional compressible convec-
tion in the presence of a magnetic field, originally studied by
Hurlburt & Toomre (1988), but here we also account for the ef-
fects of radiation. This scenario is relevant for the plasma mo-
tion inside the convective zone of the Sun, and the original study
showed how an initial uniform vertical field gets swept into con-
centrated flux sheets, relevant for explaining the granular ap-
pearance of convective cells at the solar photosphere. This is a
proof-of-principle simulation of an important multi-D effect that
is present in the convective layers of stars. In these convective
regions, energy transport through the stellar atmosphere is not
necessarily carried by radiation, but also by convective trans-
port. This convective transport effect can be altered or damp-
ened due to the presence of magnetic fields as the fieldlines can
constrict the motion of the convective cells. Understanding mag-
netoconvection is a crucial ingredient in our understanding of
stellar envelopes. This magnetoconvection case requires physi-
cal effects such as viscous diffusion, magnetic diffusion (resis-
tivity), anisotropic thermal conduction and external gravity.

Accounting for these effects, the governing equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (38)

∂(ρv)
∂t
+ ∇ ·

(
ρvv − BB +

(
p +

B · B
2

)
I
)
= fr + ρg + ∇ · τ, (39)
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Fig. 17. The normalized density, x-velocity, y-velocity, plasma pressure, (plasma + radiation) pressure, y-magnetic field, radiation energy density
and plasma temperature solutions, at t = 0.2 for Brio & Wu (1988)’s 1.5D Riemann shock-tube problem. Wherever applicable, the corresponding
solution for the non-radiative case by Brio & Wu (1988) is also shown as a solid red line. The solutions we show in black are either full FLD
(solid) or in diffusion limit (dot-dashed).

∂e
∂t
+ ∇ ·

((
e + p +

B · B
2

)
v − (B · v)B

)
= v · fr + q̇ + ρv · g

−∇ ·
(
(η∇ × B) × B −Kb̂b̂ · ∇Tg − v · τ

)
,

(40)

∂B
∂t
+ ∇ · (vB − Bv) = −∇ × (η∇ × B) . (41)

Here, g is the gravitational acceleration vector, η is the mag-
netic diffusivity, K is the thermal conductivity, and τ is the vis-

cous stress tensor given by

τ = µg

(
∇v + (∇v)T −

2
3

(∇ · v)
)
, (42)

where µg is the plasma’s dynamic viscosity. Also, b̂ = B/|B| is
the unit vector in direction of the magnetic field. For this case, we
consider a 2D rectangular (x, y) domain of dimensionless length,
Lx = 3, and depth Ly = 1. The depth is represented using a dimen-
sionless depth variable d, where d = −y, that ranges from d = d0
at the top to d = d0 + 1 at the bottom, where d0 = 0.1. Initially
the plasma is taken to be stagnant i.e. v(t = 0) = 0 everywhere.
The magnetic field is initially vertical and uniform with a di-
mensionless value of By,0 = 6.573 × 10−2. The non-dimensional
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Fig. 18. The normalized density, x-velocity, y-velocity, z-velocity, plasma pressure, (plasma + radiation) pressure, y-magnetic field, z-magnetic
field, radiation energy density and plasma temperature solutions and the By vs Bz plot, at t = 0.4 for Torrilhon (2003) 1.75D Riemann shock-tube
problem. Wherever applicable, the corresponding solution for the non-radiative case by Torrilhon (2003) is also shown as a solid red line. The
solutions we show in black are either full FLD (solid) or in diffusion limit (dot-dashed).
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Fig. 19. The density (top) and radiation energy density (bottom) solutions for the full FLD radiative Brio-Wu test. The flux-limiter λ solution
(green) is superimposed on the density solution, whereas the AMR level is superimposed on the radiation energy density solution. The dotted
vertical lines span the rarefaction waves and the dash-dot-dot vertical lines mark discontinuities. In the top panel, the 5 waves formed are distinctly
marked : fast rarefaction (FR), slow compound wave (SC), contact discontinuity (CD), slow shock (SS), and fast rarefaction wave (FR).

Fig. 20. The density (top), radiation energy density (middle) and y−magnetic field solutions for the full FLD radiative Torrilhon test. The flux-
limiter λ solution (green) is superimposed on the density solution, whereas the AMR level is superimposed on the radiation energy density solution.
The dotted vertical lines span the rarefaction waves and the dash-dot-dot vertical lines mark discontinuities. In the top panel, the 7 waves formed
are distinctly marked : fast rarefaction (FR), rotational discontinuity (RD), slow rarefaction (SR), contact discontinuity (CD), slow shock (SS),
rotational discontinuity (RD), fast shock (FS).
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Table 4. Initial left and right states for the RMHD Riemann problems

1.5D Brio-Wu test (γ = 2)
Dimensionalized initial states

Variable Left state Right state
ρ (g/cm3) 1.67429 × 10−14 2.09287 × 10−15

p (erg/cm3) 3.04046 × 10−3 3.04046 × 10−4

Bx (Gauss) 1.46601 × 10−1 1.46601 × 10−1

By (Gauss) 1.95468 × 10−1 −1.95468 × 10−1

T (K) 1.1 × 103 8.0 × 102

E (erg/cm3) 1.10764 × 10−2 4.53637 × 10−3

L (cm) 2 × 1010

Non-dimensionalized initial states
Variable Left state Right state
ρ 1.0 0.125
p 1.0 0.1

Bx 0.75 0.75
By 1.0 −1.0
T 1.0 0.8
E 3.643 1.492
L 2

1.75D Torrilhon test (γ = 5/3)
Dimensionalized initial states

Variable Left state Right state
ρ (g/cm3) 1.67429 × 10−14 5.02288 × 10−14

p (erg/cm3) 3.04046 × 10−3 9.12139 × 10−3

Bx (Gauss) 2.93201 × 10−1 2.93201 × 10−1

By (Gauss) 1.95468 × 10−1 1.38268 × 10−2

Bz (Gauss) 0.0 1.94978 × 10−1

T (K) 1.1 × 103 1.1 × 103

E (erg/cm3) 1.10764 × 10−2 1.10764 × 10−2

L (cm) 2 × 108

Non-dimensionalized initial states
Variable Left state Right state
ρ 1.0 3.0
p 1.0 3.0

Bx 1.5 1.5
By 1.0 cos(1.5rad)
Bz 0.0 sin(1.5rad)
T 1.0 1.0
E 3.643 3.643
L 2

initial profiles for temperature, density and pressure are given by
Tg(d) = d, ρ(d) = d/d0, and p(d) = d2/d0, respectively. There-
fore, at the top, (Tg, ρ, p)top = (0.1, 1, 0.1), and at the bottom,
(Tg, ρ, p)bot = (1.1, 11, 12.1). The Prandtl number, given by

σ = µgCp/K, (43)

is taken to be unity, resulting in a constant anisotropic thermal
conduction coefficient. The adiabatic index is γ = 5/3. The
Chandrasekhar number given by

Q =
B2

µ0

d2

µgη
, (44)

is taken to be 72. The magnetic Prandtl number given by

ζ0 =
ηρ0Cp

K
(45)

is taken to be 0.25. The nondimensional gravitational accelera-
tion is given by

g
mpµ

kB∇Tg
= −1 , (46)

where ∇Tg is the initial non-dimensionalized vertical tempera-
ture gradient.

The dimensionalized length and depth of the domain are
Lx = 3 × 108 cm and Ly = 108 cm. The dimensionalized
values for the plasma properties are (Tg, ρ, p)top = (6000K,
3.61286 × 10−10 g/cm2, 3.57864 × 102 erg/cm3) at the top and
(Tg, ρ, p)bot = (66000 K, 3.97415 × 10−9 g/cm2, 4.33016 × 104

erg/cm3) at the bottom. The dimensionalized magnetic field be-
comes By,0 = 13.93887 Gauss. The externally applied gravita-
tional field is g = −989.53838 m/s2. Initially, radiative equi-
librium is assumed everywhere i.e. the plasma and radiation
temperatures are equal. Accordingly, the radiation energy den-
sity values at the top and bottom are Etop = 9.80519 erg/cm3

and Ebottom = 1.43558 × 105 erg/cm3, respectively. The corre-
sponding non-dimensional values are Etop = 2.73992×10−3 and
Ebottom = 40.11518, respectively. An opacity of κ = 0.4 × 10−3

cm2/g is used for this case. Apart from the plasma density, the
orders of magnitude of these values are representative of those
in the convection zone of the Sun. The plasma density is approx-
imately 103 times lower than the typical values in the convection
zone of the Sun. Using density values similar to those in the Sun
would proportionally increase the plasma pressure and reduce
the significance of the radiation pressure. As the current work
focuses on radiation-dominant cases, we stick to these density
values.

The temperature is held fixed at the top boundary d = d0, and
its vertical derivative is held fixed to unity at the bottom bound-
ary, d = d0 + 1. The radiation temperature is held equal to the
plasma temperature at both top and bottom boundaries. The hor-
izontal magnetic field is held fixed at zero at the top and bottom
boundaries. The magnetic field lines are forced to stay vertical
there, but are free to move laterally and can exhibit compression
or expansion. The vertical velocity, the vertical gradient of the
horizontal velocity and the horizontal magnetic field all vanish
at the top and bottom boundaries. Therefore, the horizontal com-
ponents of the viscous and magnetic stresses also vanish at these
boundaries. These boundary conditions can be summarized as:

d = d0 : vy = 0,
∂vx

∂y
= 0,Tg = d0,Tr = Tg, Bx = 0,

∂By

∂y
= 0.

d = d0 + 1 : vy = 0,
∂vx

∂y
= 0,
∂Tg

∂y
= 1,Tr = Tg, Bx = 0,

∂By

∂y
= 0.

(47)

Periodic boundary conditions are used at the left and right
boundaries for all variables. To initiate the convective instabil-
ity, small-amplitude velocity perturbations are introduced into
the stagnant plasma. The above initial and boundary conditions,
apart from those for the radiation energy, have been described in
detail by Hurlburt & Toomre (1988).

The simulation is run for a non-dimensional time t = 500,
corresponding to a dimensionalized physical time of 4.417
hours. AMR is driven by the Löhner’s criterion using gradi-
ents of density, pressure and radiation energy density. The very
first high density downflows occurring due to convection are
observed at around t = 9. Figure (21) shows the density pro-
file at this time, with the adaptive mesh. The AMR captures
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these plumes very well. After these relatively high number of
plumes, the flow settles into a dynamically steady, oscillatory
state, marked by intermittent downflows and periodic compres-
sions of the magnetic field. A typical solution at such a later
time is also shown in Figure (21) along with the mesh. Fig-
ure (22) shows a snapshot of the magnetic field lines at both these
time instances, clearly showing how the initially uniform verti-
cal magnetic field is swept into concentrated flux sheets by the
convective flow. Figure (23) shows the ratios of the magnetic and
radiation pressures to the plasma pressure at this later time. Fig-
ure (24) shows the time-evolution of the total volume-integrated
kinetic, magnetic, internal and radiation energies. In the bottom
subfigure, it also shows the maximum current density, Jmax, su-
perimposed along with the magnetic energy evolution. Before
the onset of convection, the magnetic energy shows a flat profile
until about t = 8. During this time, the kinetic energy shows an
almost instantaneous increase at t = 0, due to the initial flow pro-
file not being in vertical pressure equilibrium. This is because of
the added radiation pressure on top of the original equilibrium
initial conditions specified by Hurlburt & Toomre (1988). The
vertical motions allow the plasma to equilibriate without affect-
ing the magnetic field. After these initial transients, the magnetic
field lines start to first compress, causing a sharp increase in the
total magnetic energy. This increase coincides with an increase
in kinetic energy, corresponding to the onset of convection. The
magnetic energy then oscillates about an average value in a dy-
namically steady state. Loss of magnetic energy occurs due to
decompression and due to the magnetic field being wound up
by the flow and slowly getting dissipated away from the interior
by reconnection. The internal and radiation energies settle down
at about t = 400 to steady values and reach radiative equilib-
rium. Figure (25) shows the evolution of the grid coverage as a
function of time, showing the proportion of the total area of the
computational domain covered by the various AMR levels.

As this case involves the winding of the magnetic field by the
convective plumes and the resultant magnetic reconnection, the
use of the Linde method for divergence control can create sig-
nificant errors in the discrete divergence in regions where such
phenomena occur. As mentioned earlier, such monopole effects
can lead to errors in the magnetic energy and thus the total en-
ergy, leading to artificial heating or cooling effects. It is there-
fore in our interest to examine such errors. The top panel in
Figure (26) shows the cell-integrated divergence at t = 9, ob-
tained using the Linde method. This corresponds to the density
flow solution and magnetic field lines shown in the top panels
of the Figures (21) and (22), respectively. For comparisons, this
case was also run using several other divergence control meth-
ods, namely the Powell source term method (Powell et al. 1999),
the constrained transport (CT) method (Olivares et al. 2019),
the Janhunen method (Janhunen 2000) and the Linde-Janhunen
method. The discrete divergence for the Powell, Janhunen and
Linde-Janhunen methods is also shown in the rest of the pan-
els in Figure (26). The Linde and Linde-Janhunen methods are
observed to produce errors of somewhat lower magnitude as
compared to the Powell and Janhunen methods. In this partic-
ular discretization, the CT method produces divergence errors of
the order of machine precision zero. However, the CT method
produces monopole errors similar to other schemes, when a dif-
ferent discretization is used for the evaluation of the divergence,
and still contributes to artificial heating like other schemes.

Fig. 21. The density for the radiative magnetoconvection case at t = 9
(top) and at t = 429 (bottom).

Fig. 22. The magnetic field lines for the radiative magnetoconvection
case at t = 9 (top) and at t = 429 (bottom).

5. Discussion and Conclusions

This paper describes the recently added radiation-
magnetohydrodynamics (RMHD) capabilities of the
MPI-AMRVAC computational framework. To test this RMHD
module, a variety of benchmark tests were designed. Several
cases of radiation-dominated MHD shocks were simulated.
We extend on previous works (Mihalas & Mihalas 1984;
Coggeshall & Axford 1986; Bouquet et al. 2000; Lowrie &
Rauenzahn 2007; Lowrie & Edwards 2008) discussing the
radiation-modified Rankine-Hugoniot jump conditions for
hydrodynamical shocks in the diffusion limit, to corresponding
relations for RMHD shocks. We highlighted the various types of
classical MHD shocks (fast, slow, intermediate and switch-on)
to modified versions in RMHD. These steady shocks are testing
the solver’s robustness, its AMR capability of capturing strong
shocks and discontinuities and the handling of conserved
quantities. Next, we performed a linear perturbation analysis
to derive the RMHD dispersion relations for the damping
of magnetoacoustic waves in a radiative, magnetized, static

Article number, page 25 of 30



A&A proofs: manuscript no. fld-mhd

Fig. 23. The ratio of magnetic pressure (top) and radiation pressure (bot-
tom) to plasma pressure at t = 429.

Fig. 24. Time evolutions for the diffusion limit radiative magnetocon-
vection test. Top: Total kinetic energy (solid) and total magnetic energy
(dash-dot). Middle: Total radiation energy (solid) and total plasma inter-
nal energy (dash-dot). Bottom: Total magnetic energy (solid) and maxi-
mum current density (dash-dot).

Fig. 25. Grid coverage (proportion of total area) for the various AMR
levels.

background plasma. The analytical damping rates for each of
the characteristic waves (slow, fast and undamped Alfvén),
obtained from the dispersion relation also showed an excellent
match with the rates obtained from numerical simulations. The
radiation-modified versions of MHD Riemann shock-tube prob-
lems are simulated and used to present example cases involving
transitions between optically thick to thin radiative conditions.
Including a 1.75D problem from Torrilhon (2003) well demon-
strated the effect of radiation on the various waves generated in
an MHD system, where especially the rotational discontinuities
represent a challenge to capture numerically. Although several
researchers performed RMHD simulations in the past, most of
these were targeting specific applications occurring in realistic
astrophysical environments, which are not always easily repro-
duced. Our benchmark cases made deliberate simplifications
(such as assuming constant opacities) to highlight the numerical
challenges in RMHD settings, even in essentially 1D scenarios,
requiring AMR. This paper also seeks to address the scarcity
of available literature on standard test cases for RMHD. All of
these tests can be used by future researchers to validate and test
their codes. We also showed the potential to study the detailed
interaction between convective and diffusive radiative flux
transport in multi-dimensional setups, in an idealized setting
motivated by solar magnetoconvection.

MPI-AMRVAC’s newly developed RMHD module is now
ready to be used to study more realistic scientific applications,
such as the envelopes, atmospheres, and winds of massive stars
with significant magnetic fields. Since the tests in this paper
were quite basic, a constant value of the opacity, κ, was as-
sumed. However, for realistic applications, more physically ac-
curate models of plasma opacities would have to be used, ac-
counting for opacity dependence on local plasma properties. For
instance, the variation of opacities is crucial to simulate phe-
nomena such as certain radiation-driven instabilities occurring
in stellar atmospheres and luminous accretion discs (Blaes &
Socrates 2003). As such, future work would involve relaxation
of the constant opacity assumption and using opacity tables. For
example, Moens et al. (2022a) and Debnath et al. (2024) have
already demonstrated the use of opacity tables in MPI-AMRVAC’s
RHD module, for their study of Wolf-Rayet stars and O-stars,
respectively. More realistic scientific applications could involve
studying regions of large radiation pressures and transition re-
gions between optically thin and optically thick regimes. For
such cases, numerical techniques such as the modified Godunov
method of Miniati & Colella (2007) would help with better cap-
turing of the coupling between the radiation and plasma momen-
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Fig. 26. The magnetic field discrete divergence error for the radiative
magnetoconvection case at t = 9 for the (top to bottom) Linde, Jan-
hunen, Linde-Janhunen and Powell methods.

tum and energy terms. Future work would also entail the imple-
mentation of such techniques.

For solar applications, the RMHD module demonstrated here
can bridge the gap between coronal-only simulations, which
have been the main research application for MPI-AMRVAC to date,
and advanced RMHD simulations including optically thick, con-
vective layers. There, it will be of interest to clarify the con-
nections between coronal condensations driven by optically thin
prescriptions (as the entropy mode can turn into a thermal in-
stability), and the more complete RMHD description with a ra-
diative field incorporated and dynamically coupled to the plasma
evolution. It may be necessary to develop a solar-atmosphere tai-
lored variation, where the net heat-loss q̇ prescription can be var-
ied depending on temperature and optical thickness, to smoothly
connect the typical q̇ = −ρ2Λ(T ) tabulated cooling curve Λ(T )
variations applicable in the corona (see Hermans & Keppens
(2021)) with those obtained through the FLD prescriptions. This
is left for follow-up studies.

Although MPI-AMRVAC’s RMHD module is now ready to be
used for scientific solar and astrophysical applications, the use

of the FLD module must be approached with caution. FLD has
several potentially critical limitations (Mihalas & Mihalas 1984;
Hayes & Norman 2003; Davis et al. 2012; Jiang et al. 2012)
and its use must be carefully considered on a case-by-case ba-
sis. For example, FLD has been known to produce spurious so-
lutions in transition regions, and this has been observed in the
accretion disk simulations of Boley et al. (2007). Inaccuracies
of FLD in accretion disk simulations have also been highlighted
in the work of Davis et al. (2012). FLD is a monochromatic,
frequency-independent approximation which can fail to accu-
rately model radiative flows with a strong dependence on wave
frequencies. A key aspect of the FLD model is that the radiation
flux is assumed to be in the direction of the radiation energy den-
sity gradient, rather than computed from the radiative transfer
equation. Jiang et al. (2012) demonstrate a photon bubble insta-
bility simulation where the radiation flux direction is not aligned
with the direction of the radiation energy density gradient at the
generated shock fronts. The FLD assumption would clearly fail
in such cases. This assumption can also introduce serious errors
in optically thin regions that have highly anisotropic radiation
fields. Therefore, the FLD method fails in capturing shadows and
beams, as has been clearly demonstrated in the work of Hayes &
Norman (2003) and Davis et al. (2012).

FLD also forces the Eddington factor to strictly lie between
1/3 and 1, whereas Jiang et al. (2012) have demonstrated cases
of radiative shocks where the Eddington factor can fall below
1/3. The FLD approximation retains only the terms shown in the
box in the radiation momentum equation, i.e. Equation (64) from
Appendix B. This relation between the divergence of the pres-
sure tensor and the radiative flux is the basis for using the Fick’s
diffusion law as the closure relation. This removes the effect of
radiation inertia from radiation flow solutions. Finally, the radi-
ation pressure tensor is taken to be a diagonal tensor in the opti-
cally thick limit of the FLD model, with the off-diagonal terms
being neglected. This eliminates effects such as radiation viscos-
ity (Mihalas & Mihalas 1984; Castor 2004; Jiang et al. 2012).
Both these effects, radiation inertia and radiation viscosity, can
play a significant role in the dynamics of accretion disk flows.
More sophisticated radiation models could be used to improve
upon these limitations. For example, Jiang et al. (2012) clearly
demonstrated the ability of the Variable Eddington Tensor (VET)
method in capturing beams and shadows, as opposed to FLD.
However, increasingly sophisticated models would come with
increased complexity and higher computational cost. The pos-
sible incorporation of such models into MPI-AMRVAC’s RMHD
module would be the subject of follow-up efforts. These efforts
would then also involve more rigorous tests such as the shadow
test, beam test and the photon bubble instability test as well as
applications such as accretion disk simulations.
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Appendix A: Frame transformation for the RMHD
equations

Following Jiang et al. (2012), the radiation MHD equations,
including the equations of the radiation energy density and radi-
ation flux, with the radiative terms evaluated in the inertial lab
frame, are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (48)

∂(ρv)
∂t
+ ∇ ·

(
ρvv − BB +

(
p +

B · B
2

)
I
)
= −Sr(P), (49)

∂e
∂t
+ ∇ ·

((
e + p +

B · B
2

)
v − (B · v)B

)
= −cSr(E), (50)

∂B
∂t
+ ∇ · (vB − Bv) = 0, (51)

∂ELF

∂t
+ ∇ · FLF = cSr(E), (52)

1
c2

∂FLF

∂t
+ ∇ · PLF = Sr(P). (53)

Here, ELF , FLF and PLF are the frequency-integrated radiation
energy density, flux vector and pressure tensor in the inertial lab
frame. The source terms in the momentum and plasma energy
equations are given by

Sr(P) = −ρ(κF + κS )(FLF − (vELF + v · PLF))/c

+ρv(κParT 4
g − κE ELF)/c, (54)

Sr(E) = ρ(κF − κS )
v
c2 · (FLF − (vELF + v · PLF))

+ρ(κParT 4
g − κE ELF). (55)

Here, κP, κE , κF and κS , are the Planck, energy density, flux mean
absorption and flux mean scattering opacities, respectively. The
relations between the radiation energy density, flux vector and
pressure tensor in the inertial and co-moving frames are

ELF = ECMF + 2
v
c2 · FCMF , (56)

FLF = FCMF + vECMF + v · PCMF , (57)

PLF = PCMF + 2
v
c2 FCMF , (58)

where ECMF , FCMF and PCMF are the frequency-integrated radi-
ation energy density, flux vector and pressure tensor in the co-
moving frame.

Equations (48) and (51) are identical to Equations (1) and
(4), respectively. Substituting Equations (54)–(58) in Equations
(49), (50), (52) and (53), assuming κS = 0, and substituting

q̇CMF = cκEρECMF − 4κPρσT 4
g , (59)

and

fr,CMF =
ρκFFCMF

c
, (60)

we get the following equations:

∂(ρv)
∂t
+ ∇ ·

(
ρvv − BB +

(
p +

B · B
2

)
I
)
= fr,CMF +O(v/c), (61)

∂e
∂t
+ ∇ ·

((
e + p +

B · B
2

)
v − (B · v)B

)
= v · fr,CMF

+q̇CMF +O(v/c), (62)

∂ECMF

∂t
+∇· (ECMFv)+∇·FCMF +PCMF : ∇v = −q̇CMF+O(v/c),

(63)

1
c2

(
∂FCMF

∂t
+ ∇ · (FCMFv)

)
+ ∇ · PCMF = −fr,CMF +O(v/c).

(64)

Here, O(v/c) comprises terms proportional to (v/c) or higher or-
der powers. For non-relativistic velocities, these terms are very
small and can be conveniently neglected. For non-relativistic
velocities, and dropping the subscript CMF for simplicity, the
Equations (61), (62) and (63) reduce to Equations (2), (3) and
(8), respectively. In Equation (64), the terms with the (1/c2) fac-
tor on the left-hand side and the higher order terms are ignored,
resulting in the relation between the divergence of the pressure
tensor and the radiative flux as shown in the box drawn.
Appendix B: Dispersion relation for damping of MHD
waves in a radiative medium

To obtain the dispersion relation, we first rewrite the Equa-
tions (1)–(4) in non-conservative form, and reformulate the en-
ergy equation to a pressure evolution equation:

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0, (65)

ρ
∂v
∂t
+ ρv · ∇v + ∇p + (∇B) · B − (B · ∇) B = fr, (66)

∂p
∂t
+ v · ∇p + γp∇ · v = (γ − 1)q̇, (67)

∂B
∂t
+ (v · ∇) B + B∇ · v − (B · ∇) v = 0. (68)

These above equations will be linearized assuming an infinite,
static, time-independent (∂/∂t = 0), uniform background for the
plasma properties. In this equilibrium state, the heating and cool-
ing function q̇ is also assumed to vanish, and therefore the equi-
librium radiation temperature equals the plasma temperature.
The equilibrium radiation force fr also vanishes due to the con-
stant radiation energy. The equilibrium state is hereby denoted
by ρ0, v0 = 0, p0, B0, Tg,0, E0 and Tr,0 = Tg,0 for the equilib-
rium density, velocity, plasma pressure, magnetic field, plasma
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temperature, radiation energy density and radiation temperature,
respectively. Small linear deviations from this equilibrium are
denoted by the subscript ‘1’. The linearized versions of Equa-
tions (65)–(68) for λ = 1/3 (the optically thick limit) are given
by

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (69)

ρ0
∂v1

∂t
+ ∇p1 + (∇B1) · B0 − (B0 · ∇) B1 = −

1
3
∇E1, (70)

∂p1

∂t
+ γp0∇ · v1 = (γ − 1)(q̇ρρ1 + q̇Tg Tg,1 + q̇Tr Tr,1), (71)

∂B1

∂t
+ B0∇ · v1 − (B0 · ∇) v1 = 0. (72)

The solenoidality condition, Equation (4), reduces to

∇ · B1 = 0. (73)

and the ideal gas law, Equation (7), neglecting variations in µ,
reduces to

p1

p0
=
ρ1

ρ0
+

Tg,1

Tg,0
. (74)

The linearized version of Equation (8) for radiation energy is

∂E1

∂t
+

4
3

E0∇ · v1 = −(q̇ρρ1 + q̇Tg Tg,1 + q̇Tr Tr,1)+∇ ·
(

c
3ρ0κ
∇E1

)
.

(75)

Here, q̇ρ, q̇Tr and q̇Tg are partial derivatives of the q̇ function with
respect to ρ, Tr and Tg, respectively, and are given by

q̇ρ = cκar(T 4
r,0 − T 4

g,0), (76)

q̇Tr = 4cρ0κarT 3
r,0, (77)

q̇Tg = −4cρ0κarT 3
g,0. (78)

These derivatives are to be evaluated for the background state,
such that q̇ρ = 0 as we have adopted radiative equilibrium. Note
that we here get rather simple expressions for these derivatives,
as we assumed constant opacities κ, while many of the physically
relevant unstable wave mode solutions in stellar interiors or at-
mospheres relate to detailed variations of opacities with density
and temperatures. This complication is e.g. handled in Blaes &
Socrates (2003). The relation between radiation energy density
and radiation temperature can be linearized to give

E1

E0
= 4

Tr,1

Tr,0
. (79)

To obtain dispersion relations for linear stability analysis, plane-
wave perturbations of the form

ρ1 = ρ̂ei(k·x−ωt) (80)

can be assumed, where k is the wavenumber and ω is the angular
frequency for the plane wave perturbation. For the 1.75D cases
studied numerically further on, we will choose k to be along the
x-axis k = (k, 0, 0).

Applying such perturbations to ρ, v, p, B and E and substi-
tuting them in Equations (69)–(72) and (75) gives the following

ωρ̂ = ρ0(k · v̂), (81)

ωρ0v̂ = k(p̂ + Ê/3) + k(B̂ · B0) − (B0 · k)B̂, (82)

ωp̂ = γp0(k · v̂) + i(γ − 1)
(
q̇ρρ̂ + q̇Tg T̂g + q̇Tr T̂r

)
, (83)

ωB̂ = B0(k · v̂) − (B0 · k)v̂, (84)

ωÊ =
4
3

E0(k · v̂) − i
(
q̇ρρ̂ + q̇Tg T̂g + q̇Tr T̂r

)
− i

k2cÊ
3ρ0κ

. (85)

Equations (81)–(85) originally constitute a set of 9 equations,
accounting for each of the 3 dimensions of the momentum and
magnetic field eigenvalue equations. However, for k = (k, 0, 0),
the equation for the x-component of the magnetic field reduces to
B̂x = 0, reducing it to a set of 8 equations. This is the solenoidal-
ity condition for the perturbed magnetic field, and it makes the
number of physical eigenfrequencies ω to be 8 in total, one more
than the familiar ideal MHD result. In the above equations, T̂g
can be substituted in terms of density and plasma pressure per-
turbation amplitudes using Equation (74). Similarly, Ê can be
substituted using Equation (79).

The above equations then lead to the dispersion relation,
where we use certain characteristic speeds of the flow:

c2
g,0 =

γp0

ρ0
, c2

r,0 =
4E0

9ρ0
, v2

A,0 =
B2

x,0 + B2
y,0 + B2

z,0

ρ0
, v2

A,x,0 =
B2

x,0

ρ0

(86)

where cg,0, cr,0, vA,0 and vA,x,0 are the adiabatic plasma sound
speed, the radiation sound speed, the total Alfvén speed and the
x-Alfvén speed, respectively. The final dispersion relation can be
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written as:(
ω2 − k2v2

A,x,0

)(
ω6 + i

(
ck2

3ρ0κ
+

q̇Tr Tr,0

4E0
− (γ − 1)

q̇Tg Tg,0

p0

)
ω5

−k2
(
c2

r,0 + c2
g,0 + v2

A,0 − (γ − 1)q̇Tg

Tg,0

p0

c
3ρ0κ

)
ω4

+ik2
(
−

ck2

3ρ0κ

(
c2

g,0 + v2
A,0

)
+

(γ − 1)q̇Tg

Tg,0

ρ0

(4
3
+
γc2

r,0

c2
g,0

+
γv2

A,0

c2
g,0

)
−q̇Tr

Tr,0

ρ0

( c2
g,0

9c2
r,0

+
γ − 1

3
+

v2
A,0

9c2
r,0

))
ω3

+k4
(
(γ − 1)

(
−q̇Tg

Tg,0

ρ0

c
3ρ0κ

)(
1 +
γv2

A,0

c2
g,0

)
+v2

A,x,0

(
c2

r,0 + c2
g,0

))
ω2

+ik4
(
v2

A,x,0

)(
k2c2

g,0
c

3ρ0κ
− q̇Tg

Tg,0

ρ0
(γ − 1)

(γc2
r,0

c2
g,0

+
4
3

)
+q̇Tg

Tg,0

ρ0

(
γ − 1

3
+

c2
g,0

9c2
r,0

))
ω

+k6(γ − 1)
(
v2

A,x,0

)
q̇Tg

Tg,0

ρ0

c
3ρ0κ

)
= 0 . (87)
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